Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Access Microbiol ; 2(3): acmi000093, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974570

RESUMEN

PURPOSE: Australia was officially recognised as having eliminated endemic measles transmission in 2014. Maintaining laboratory support for surveillance of vaccine-preventable diseases, such as measles, is an essential component of reaching and maintaining transmission-free status. METHODOLOGY: Real-time and conventional PCR-based tools were used to detect, differentiate from measles vaccine virus (MeVV), and sequence fragments of measles viruses (MeV) identified from specimens collected in Queensland. Specimens were mostly from travellers who had visited or returned to Queensland from international or interstate sites or been in contact with a case from either group. RESULTS: Between 2010 and 2017, 13 678 specimens were tested in our laboratory using real-time RT-PCR (RT-rPCR), identifying 533 positives. Most specimens were swabs (70.98 %) and urines (25.56 %). A MeVV RT-rPCR was used on request and identified 154 instances of MeVV. MeV-positive extracts were genotyped as required. Genotypes identified among sequenced specimens included B3, D4, D8, D9, G3, and H1 as well as members of clade A as expected from the detection of MeV among virus introductions due to global travel and vaccination. CONCLUSION: We describe the workflow employed and results from our laboratory between 2010 and 2017 for the sensitive detection of MeV infection, supporting high-quality surveillance to ensure the maintenance of Australia's measles-free status.

2.
mSphere ; 5(5)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907949

RESUMEN

Traditional screening for arboviruses in mosquitoes requires a priori knowledge and the utilization of appropriate assays for their detection. Mosquitoes can also provide other valuable information, including unexpected or novel arboviruses, nonarboviral pathogens ingested from hosts they feed on, and their own genetic material. Metagenomic analysis using next-generation sequencing (NGS) is a rapidly advancing technology that allows us to potentially obtain all this information from a mosquito sample without any prior knowledge of virus, host, or vector. Moreover, it has been recently demonstrated that pathogens, including arboviruses and parasites, can be detected in mosquito excreta by molecular methods. In this study, we investigated whether RNA viruses could be detected in mosquito excreta by NGS. Excreta samples were collected from Aedes vigilax and Culex annulirostris experimentally exposed to either Ross River or West Nile viruses and from field mosquitoes collected across Queensland, Australia. Total RNA was extracted from the excreta samples, reverse transcribed to cDNA, and sequenced using the Illumina NextSeq 500 platform. Bioinformatic analyses from the generated reads demonstrate that mosquito excreta provide sufficient RNA for NGS, allowing the assembly of near-full-length viral genomes. We detected Australian Anopheles totivirus, Wuhan insect virus 33, and Hubei odonate virus 5 and identified seven potentially novel viruses closely related to members of the order Picornavirales (2/7) and to previously described, but unclassified, RNA viruses (5/7). Our results suggest that metagenomic analysis of mosquito excreta has great potential for virus discovery and for unbiased arbovirus surveillance in the near future.IMPORTANCE When a mosquito feeds on a host, it ingests not only its blood meal but also an assortment of microorganisms that are present in the blood, thus acting as an environmental sampler. By using specific tests, it is possible to detect arthropod-borne viruses (arboviruses) like dengue and West Nile viruses in mosquito excreta. Here, we explored the use of next-generation sequencing (NGS) for unbiased detection of RNA viruses present in excreta from experimentally infected and field-collected mosquitoes. We have demonstrated that mosquito excreta provide a suitable template for NGS and that it is possible to recover and assemble near-full-length genomes of both arboviruses and insect-borne viruses, including potentially novel ones. These results importantly show the direct practicality of the use of mosquito excreta for NGS, which in the future could be used for virus discovery, environmental virome sampling, and arbovirus surveillance.


Asunto(s)
Aedes/virología , Culex/virología , Heces/virología , Virus de Insectos/clasificación , Viroma/genética , Animales , Arbovirus/clasificación , Arbovirus/aislamiento & purificación , Australia , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de Insectos/aislamiento & purificación , Metagenómica
3.
Emerg Infect Dis ; 25(12): 2243-2252, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31742522

RESUMEN

Australia experienced its largest recorded outbreak of Ross River virus (RRV) during the 2014-15 reporting year, comprising >10,000 reported cases. We investigated epidemiologic, entomologic, and virologic factors that potentially contributed to the scale of the outbreak in Queensland, the state with the highest number of notifications (6,371). Spatial analysis of human cases showed that notifications were geographically widespread. In Brisbane, human case notifications and virus detections in mosquitoes occurred across inland and coastal locations. Viral sequence data demonstrated 2 RRV lineages (northeastern genotypes I and II) were circulating, and a new strain containing 3 unique amino acid changes in the envelope 2 protein was identified. Longitudinal mosquito collections demonstrated unusually high relative abundance of Culex annulirostris and Aedes procax mosquitoes, attributable to extensive freshwater larval habitats caused by early and persistent rainfall during the reporting year. Increased prevalence of these mosquitoes probably contributed to the scale of this outbreak.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , Virus del Río Ross , Infecciones por Alphavirus/historia , Infecciones por Alphavirus/transmisión , Brotes de Enfermedades , Genes Virales , Geografía Médica , Historia del Siglo XXI , Humanos , Mosquitos Vectores/virología , Filogenia , Vigilancia en Salud Pública , Queensland/epidemiología , Virus del Río Ross/clasificación , Virus del Río Ross/genética , Virus del Río Ross/inmunología
4.
Parasit Vectors ; 12(1): 355, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31319880

RESUMEN

BACKGROUND: Malaria is the most important vector-borne disease in the world. Epidemiological and ecological studies of malaria traditionally utilize detection of Plasmodium sporozoites in whole mosquitoes or salivary glands by microscopy or serological or molecular assays. However, these methods are labor-intensive, and can over- or underestimate mosquito transmission potential. To overcome these limitations, alternative sample types have been evaluated for the study of malaria. It was recently shown that Plasmodium could be detected in saliva expectorated on honey-soaked cards by Anopheles stephensi, providing a better estimate of transmission risk. We evaluated whether excretion of Plasmodium falciparum nucleic acid by An. stephensi correlates with expectoration of parasites in saliva, thus providing an additional sample type for estimating transmission potential. Mosquitoes were exposed to infectious blood meals containing cultured gametocytes, and excreta collected at different time points post-exposure. Saliva was collected on honey-soaked filter paper cards, and salivary glands were dissected and examined microscopically for sporozoites. Excreta and saliva samples were tested by real time polymerase chain reaction (RT-rtPCR). RESULTS: Plasmodium falciparum RNA was detected in mosquito excreta as early as four days after ingesting a bloodmeal containing gametocytes. Once sporogony (the development of sporozoites) occurred, P. falciparum RNA was detected concurrently in both excreta and saliva samples. In the majority of cases, no difference was observed between the Ct values obtained from matched excreta and saliva samples, suggesting that both samples provide equally sensitive results. A positive association was observed between the molecular detection of the parasites in both samples and the proportion of mosquitoes with sporozoites in their salivary glands from each container. No distinguishable parasites were observed when excreta samples were stained and microscopically analyzed. CONCLUSIONS: Mosquito saliva and excreta are easily collected and are promising for surveillance of malaria-causing parasites, especially in low transmission settings or in places where arboviruses co-circulate.


Asunto(s)
Anopheles/parasitología , Heces/parasitología , Malaria/transmisión , Mosquitos Vectores/parasitología , Plasmodium/aislamiento & purificación , Saliva/parasitología , Animales , ADN Protozoario/genética , Femenino , Malaria Falciparum/transmisión , Masculino , Plasmodium/genética , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Esporozoítos/genética , Esporozoítos/aislamiento & purificación
5.
J Med Entomol ; 56(4): 1135-1138, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-30937448

RESUMEN

Arbovirus surveillance is crucial for the implementation of vector-borne disease control measures. Recently, it has been demonstrated that mosquitoes with a disseminated arbovirus infection excrete viral RNA, which can be detected by molecular methods. Thereby, mosquito excreta has been proposed as a sample type that could be utilized for arbovirus surveillance. In this study, we evaluated if West Nile virus (Kunjin strain, WNVKUN) RNA in Culex annulirostris Skuse (Diptera: Culicidae) excreta deposited on different substrates could be detected after storage for up to 2 wk at tropical conditions of high heat and humidity. No significant drop in relative quantity of WNVKUN RNA (determined by comparison of Ct values) in excreta deposited on Flinders Associate Technologies (FTA) cards was observed over 14 d, suggesting that RNA was stable for that time. There was no significant difference in relative quantity of WNVKUN RNA in excreta deposited on FTA cards or polycarbonate substrates after 24 h. However, after 7 and 14 d, there was a significant decline in the relative quantity of viral RNA in the excreta stored on polycarbonate substrates. For incorporation in arbovirus surveillance programs, we recommend the use of polycarbonate substrates for excreta collection in mosquito traps deployed overnight, and the integration of FTA cards in traps serviced weekly or fortnightly. Polycarbonate substrates facilitate the collection of the majority of excreta from a trap, and while FTA cards offer limited area coverage, they enable preservation of viral RNA in tropical conditions for extended periods of time.


Asunto(s)
Culicidae/virología , Heces/virología , ARN Viral/análisis , Virus del Nilo Occidental/aislamiento & purificación , Animales
6.
PLoS Negl Trop Dis ; 12(8): e0006771, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30169512

RESUMEN

BACKGROUND: Emerging and re-emerging arthropod-borne viruses (arboviruses) cause human and animal disease globally. Field and laboratory investigation of mosquito-borne arboviruses requires analysis of mosquito samples, either individually, in pools, or a body component, or secretion such as saliva. We assessed the applicability of mosquito excreta as a sample type that could be utilized during studies of Ross River and West Nile viruses, which could be applied to the study of other arboviruses. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes were fed separate blood meals spiked with Ross River virus and West Nile virus. Excreta was collected daily by swabbing the bottom of containers containing batches and individual mosquitoes at different time points. The samples were analyzed by real-time RT-PCR or cell culture enzyme immunoassay. Viral RNA in excreta from batches of mosquitoes was detected continuously from day 2 to day 15 post feeding. Viral RNA was detected in excreta from at least one individual mosquito at all timepoints, with 64% and 27% of samples positive for RRV and WNV, respectively. Excretion of viral RNA was correlated with viral dissemination in the mosquito. The proportion of positive excreta samples was higher than the proportion of positive saliva samples, suggesting that excreta offers an attractive sample for analysis and could be used as an indicator of potential transmission. Importantly, only low levels of infectious virus were detected by cell culture, suggesting a relatively low risk to personnel handling mosquito excreta. CONCLUSIONS/SIGNIFICANCE: Mosquito excreta is easily collected and provides a simple and efficient method for assessing viral dissemination, with applications ranging from vector competence experiments to complementing sugar-based arbovirus surveillance in the field, or potentially as a sample system for virus discovery.


Asunto(s)
Culicidae/virología , Heces/virología , Virus del Río Ross/aislamiento & purificación , Virus del Nilo Occidental/aislamiento & purificación , Animales
7.
Viruses ; 10(5)2018 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-29757218

RESUMEN

Zika virus (ZIKV) has spread widely in the Pacific and recently throughout the Americas. Unless detected by RT-PCR, confirming an acute ZIKV infection can be challenging. We developed and validated a multiplexed flavivirus immunoglobulin M (IgM) microsphere immunoassay (flaviMIA) which can differentiate ZIKV-specific IgM from that due to other flavivirus infections in humans. The flaviMIA bound 12 inactivated flavivirus antigens, including those from ZIKV and yellow fever virus (YFV), to distinct anti-flavivirus antibody coupled beads. These beads were used to interrogate sera from patients with suspected ZIKV infection following travel to relevant countries. FlaviMIA results were validated by comparison to the ZIKV plaque reduction neutralization test (PRNT). The results highlight the complexity of serological ZIKV diagnosis, particularly in patients previously exposed to or vaccinated against other flaviviruses. We confirmed 99 patients with ZIKV infection by a combination of RT-PCR and serology. Importantly, ZIKV antibodies could be discriminated from those ascribed to other flavivirus infections. Serological results were sometimes confounded by the presence of pre-existing antibodies attributed to previous flavivirus infection or vaccination. Where RT-PCR results were negative, testing of appropriately timed paired sera was necessary to demonstrate seroconversion or differentiation of recent from past infection with or exposure to ZIKV.


Asunto(s)
Anticuerpos Antivirales/sangre , Inmunoensayo , Inmunoglobulina M/sangre , Infección por el Virus Zika/diagnóstico , Virus Zika , Reacciones Cruzadas/inmunología , Virus del Dengue , Infecciones por Flavivirus/diagnóstico , Humanos , Microesferas , Pruebas de Neutralización , Reacción en Cadena en Tiempo Real de la Polimerasa , Pruebas Serológicas , Viaje , Infección por el Virus Zika/inmunología
8.
PLoS Negl Trop Dis ; 11(3): e0005505, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28339458

RESUMEN

BACKGROUND: The globally important Zika, dengue and chikungunya viruses are primarily transmitted by the invasive mosquitoes, Aedes aegypti and Aedes albopictus. In Australia, there is an increasing risk that these species may invade highly urbanized regions and trigger outbreaks. We describe the development of a Rapid Surveillance for Vector Presence (RSVP) system to expedite presence- absence surveys for both species. METHODOLOGY/PRINCIPAL FINDINGS: We developed a methodology that uses molecular assays to efficiently screen pooled ovitrap (egg trap) samples for traces of target species ribosomal RNA. Firstly, specific real-time reverse transcription-polymerase chain reaction (RT-PCR) assays were developed which detect a single Ae. aegypti or Ae. albopictus first instar larva in samples containing 4,999 and 999 non-target mosquitoes, respectively. ImageJ software was evaluated as an automated egg counting tool using ovitrap collections obtained from Brisbane, Australia. Qualitative assessment of ovistrips was required prior to automation because ImageJ did not differentiate between Aedes eggs and other objects or contaminants on 44.5% of ovistrips assessed, thus compromising the accuracy of egg counts. As a proof of concept, the RSVP was evaluated in Brisbane, Rockhampton and Goomeri, locations where Ae. aegypti is considered absent, present, and at the margin of its range, respectively. In Brisbane, Ae. aegypti was not detected in 25 pools formed from 477 ovitraps, comprising ≈ 54,300 eggs. In Rockhampton, Ae. aegypti was detected in 4/6 pools derived from 45 ovitraps, comprising ≈ 1,700 eggs. In Goomeri, Ae. aegypti was detected in 5/8 pools derived from 62 ovitraps, comprising ≈ 4,200 eggs. CONCLUSIONS/SIGNIFICANCE: RSVP can rapidly detect nucleic acids from low numbers of target species within large samples of endemic species aggregated from multiple ovitraps. This screening capability facilitates deployment of ovitrap configurations of varying spatial scales, from a single residential block to entire suburbs or towns. RSVP is a powerful tool for surveillance of invasive Aedes spp., validation of species eradication and quality assurance for vector control operations implemented during disease outbreaks.


Asunto(s)
Aedes/crecimiento & desarrollo , Entomología/métodos , Monitoreo Epidemiológico , Mosquitos Vectores/crecimiento & desarrollo , Animales , Australia , Técnicas de Diagnóstico Molecular/métodos , ARN Ribosómico/análisis , ARN Ribosómico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
9.
PLoS Negl Trop Dis ; 10(9): e0004959, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27643685

RESUMEN

BACKGROUND: Within the last 10 years Zika virus (ZIKV) has caused unprecedented epidemics of human disease in the nations and territories of the western Pacific and South America, and continues to escalate in both endemic and non-endemic regions. We evaluated the vector competence of Australian mosquitoes for ZIKV to assess their potential role in virus transmission. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes were exposed to infectious blood meals containing the prototype African ZIKV strain. After 14 days incubation at 28°C and high relative humidity, infection, dissemination and transmission rates were assessed. Infection in Culex annulirostris and Cx. sitiens could not be detected. 8% of Cx. quinquefasciatus were infected, but the virus did not disseminate in this species. Despite having infection rates > 50%, Aedes notoscriptus and Ae. vigilax did not transmit ZIKV. In contrast, Ae. aegypti had infection and transmission rates of 57% and 27%, respectively. In susceptibility trials, the virus dose required to infect 50% (ID50) of Ae. aegypti was106.4 tissue culture infectious dose50 (TCID50)/mL. Additionally, a threshold viral load within the mosquito of at least 105.1 TCID50 equivalents/mL had to be reached before virus transmission occurred. CONCLUSIONS/SIGNIFICANCE: We confirmed Ae. aegypti to be the most likely mosquito vector of ZIKV in Australia, although the restricted distribution of this species will limit the receptive zone to northern Queensland where this species occurs. Importantly, the role in ZIKV transmission of Culex and other Aedes spp. tested will be negligible. Despite being the implicated vector, the relatively high ID50 and need for a high titer disseminated infection in Ae. aegypti suggest that high mosquito population densities will be required to facilitate epidemic ZIKV transmission among the currently immunologically naïve human population in Australia.


Asunto(s)
Aedes/virología , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Virus Zika/aislamiento & purificación , Animales , Australia , Culex/virología , Humanos , Humedad , Saliva/virología , Carga Viral , Replicación Viral , Virus Zika/fisiología
10.
PLoS Curr ; 82016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27679739

RESUMEN

INTRODUCTION: The globally emergent Zika virus (ZIKV) is a threat to Australia, given the number of imported cases from epidemic regions and the presence of competent mosquito vectors. We report the isolation of ZIKV from a female traveler who recently returned from Tonga to Brisbane, Queensland, Australia in 2016. METHODS: A specific TaqMan real-time reverse transcriptase polymerase chain reaction assay (RT-PCR) assay was used to detect ZIKV in serum and urine samples. Conventional cell culture techniques and suckling mice were employed in an attempt to isolate ZIKV from serum and urine. RESULTS: A ZIKV isolate (TS17-2016) was recovered from the serum sample after one passage in suckling mouse brains and harvested 11 days post inoculation. Phylogenetic analysis of complete envelope (E) gene sequences demonstrated TS17-2016 shared 99.9% nucleotide identity with other contemporary sequences from Tonga 2016, Brazil 2015 and French Polynesia 2013 within the Asian lineage. DISCUSSION: This is the first known report of successful isolation of ZIKV from a human clinical sample in Australia and the first from a traveler from Tonga. This study highlights the potential difficulties in isolating ZIKV from acute clinical samples using conventional cell culture techniques, particularly in non-endemic countries like Australia where access to samples of sufficient viral load is limited. The successful isolation of TS17-2016 will be essential for continued investigations of ZIKV transmission and pathogenicity and will enable the advancement of new preventative control measures extremely relevant to the Australian and Pacific region.

11.
Parasit Vectors ; 8: 509, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26444264

RESUMEN

BACKGROUND: Although sentinel animals are used successfully throughout the world to monitor arbovirus activity, ethical considerations and cross-reactions in serological assays highlight the importance of developing viable alternatives. Here we outline the development of a passive sentinel mosquito arbovirus capture kit (SMACK) that allows for the detection of arboviruses on honey-baited nucleic acid preservation cards (Flinders Technology Associates; FTA®) and has a similar trap efficacy as standard light traps in our trials. METHODS: The trap efficacy of the SMACK was assessed against Centers for Disease Control and Prevention (CDC) miniature light traps (standard and ultraviolet) and the Encephalitis Vector Survey (EVS) trap in a series of Latin square field trials conducted in North Queensland, Australia. The ability of the SMACK to serve as a sentinel arbovirus surveillance tool was assessed in comparison to Passive Box Traps (PBT) during the 2014 wet season in the Cairns, Australia region and individually in the remote Northern Peninsula Area (NPA) of Australia during the 2015 wet season. RESULTS: The SMACK caught comparable numbers of mosquitoes to both CDC light traps (mean capture ratio 0.86: 1) and consistently outperformed the EVS trap (mean capture ratio 2.28: 1) when CO2 was supplied by either a gas cylinder (500 ml/min) or dry ice (1 kg). During the 2014 arbovirus survey, the SMACK captured significantly (t 6 = 2.1, P = 0.04) more mosquitoes than the PBT, and 2 and 1 FTA® cards were positive for Ross River virus and Barmah Forest virus, respectively, while no arboviruses were detected from PBTs. Arbovirus activity was detected at all three surveillance sites during the NPA survey in 2015 and ca. 27 % of FTA® cards tested positive for either Murray Valley encephalitis virus (2 detections), West Nile virus (Kunjin subtype; 13 detections), or both viruses on two occasions. CONCLUSIONS: These results demonstrate that the SMACK is a versatile, simple, and effective passive arbovirus surveillance tool that may also be used as a traditional overnight mosquito trap and has the potential to become a practical substitute for sentinel animal programs.


Asunto(s)
Arbovirus/aislamiento & purificación , Culicidae/virología , Control de Mosquitos/instrumentación , Animales , Australia , Miel , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología , Insectos Vectores/virología , Vigilancia de Guardia
12.
J Med Entomol ; 51(1): 210-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24605471

RESUMEN

Current surveillance methods for adult Aedes aegypti (L.) are expensive, require electrical power (e.g., the BG-Sentinel trap, BGS), are labor intensive (aspirators), or require difficult to use and costly adhesives (sticky ovitraps). Field trials were conducted in Cairns (Australia) to compare the efficacy of the newly designed Gravid Aedes Trap (GAT) against existing sticky ovitraps (MosquiTRAP and double sticky ovitrap) and the BGS. Latin square design trials confirmed that alarge GAT using a 9.2-liters bucket treated with Mortein Barrier Outdoor Surface Spray ([AI] 0.3 g/kg imiprothrin and 0.6 g/kg deltamethrin) outperformed a smaller 1.2-liters GAT and collected, on average, 3.7x and 2.4X more female Ae. aegypti than the MosquiTRAP and double sticky ovitrap, respectively. Field trials showed that the GAT collected 10-50% less female Ae. aegypti than the BGS trap but 30% more gravid mosquitoes than the BGS. Trials using the BGS and the GAT indicated that there was no difference in capture rates between female Ae. aegypti uninfected and infected with the wMel strain of Wolbachia, and wMel infection rates were nearly identical at >90% to field captured Ae. aegypti. The potential for the GAT to be used for dengue virus surveillance was also demonstrated with dengue virus type 3 RNA detected in five-sixths and six-sixths pools ofAe. aegypti stored in a GAT held at 28 degreeC and 60% relative humidity for 7 and 14 d, respectively. Mosquito knock down in GATs treated with Mortein surface spray set in 30, 70, and 99% shade was comparable for up to 2 mo, with only approximately 10% of adults escaping. The GAT is therefore a useful tool for capturing adult Ae. aegypti and may be suitable for other container-inhabiting species such as Aedes albopictus (Skuse) and Culex quinquefasciatus Say. The low cost and practicality of operation make the GAT suitable for vector surveillance and projects requiring monitoring of mosquitoes for Wolbachia and arboviruses, especially in developing countries.


Asunto(s)
Aedes , Control de Mosquitos/instrumentación , ARN Viral/análisis , Aedes/virología , Animales , Virus del Dengue/aislamiento & purificación , Femenino , Insectos Vectores/virología
13.
Vector Borne Zoonotic Dis ; 14(1): 66-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24359415

RESUMEN

Effective arbovirus surveillance is essential to ensure the implementation of control strategies, such as mosquito suppression, vaccination, or dissemination of public warnings. Traditional strategies employed for arbovirus surveillance, such as detection of virus or virus-specific antibodies in sentinel animals, or detection of virus in hematophagous arthropods, have limitations as an early-warning system. A system was recently developed that involves collecting mosquitoes in CO2-baited traps, where the insects expectorate virus on sugar-baited nucleic acid preservation cards. The cards are then submitted for virus detection using molecular assays. We report the application of this system for detecting flaviviruses and alphaviruses in wild mosquito populations in northern Australia. This study was the first to employ nonpowered passive box traps (PBTs) that were designed to house cards baited with honey as the sugar source. Overall, 20/144 (13.9%) of PBTs from different weeks contained at least one virus-positive card. West Nile virus Kunjin subtype (WNVKUN), Ross River virus (RRV), and Barmah Forest virus (BFV) were detected, being identified in 13/20, 5/20, and 2/20 of positive PBTs, respectively. Importantly, sentinel chickens deployed to detect flavivirus activity did not seroconvert at two Northern Territory sites where four PBTs yielded WNVKUN. Sufficient WNVKUN and RRV RNA was expectorated onto some of the honey-soaked cards to provide a template for gene sequencing, enhancing the utility of the sugar-bait surveillance system for investigating the ecology, emergence, and movement of arboviruses.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Arbovirus/aislamiento & purificación , Culicidae/virología , Insectos Vectores/virología , Control de Mosquitos/instrumentación , Alphavirus/genética , Alphavirus/aislamiento & purificación , Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/transmisión , Infecciones por Alphavirus/virología , Animales , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/virología , Arbovirus/genética , Australia/epidemiología , Secuencia de Bases , Dióxido de Carbono , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Pollos , Culicidae/fisiología , Femenino , Flavivirus/genética , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Miel , Insectos Vectores/fisiología , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , ARN Viral/química , ARN Viral/genética , Vigilancia de Guardia , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...